
CVE to T&TS:
Using CVE attributes for
MITRE ATT&CK mapping

WHITEPAPER

MITRE ATT&CK

Mapping CVEs to T&Ts

What has been done so far?

The Voyager18 approach

CWE

CVSS3 vector

Confidentiality, integrity, and availability?

Text analysis

Putting it all together

Future research and challenges

About Vulcan Cyber

About Voyager18

References

3

5

12

4

9

3

6

13

14

15

15

5

11

Table of contents

MITRE ATT&CK
As the cyber industry embraces and standardizes the MITRE ATT&CK framework, while
at the same time understanding that vulnerability management by itself is not enough,
it is required to combine both worlds and expand our visibility and perception of CVEs.

MITRE ATT&CK is a “globally-accessible knowledge base of adversary tactics and
techniques based on real-world observations”. The ATT&CK is a dictionary that
centralizes techniques that are used by threat actors along with cyber attacks. These
techniques are separated and categorized into tactics, which can also be referred to as
the adversary’s milestones during the attack, before reaching their end goal.

An explanation of the MITRE ATT&CK framework can also be found here, in our previous
blog post.

Mapping CVEs to T&Ts?
Mapping offensive techniques to CVEs allows us, the defenders, to follow the “flow” of a
CVE, breaking down the steps and actions taken during its exploitation, and identifying
what can be achieved (Impact) following successful exploitation.

Having this information about a CVE could help with adapting proper detections and
mitigations for relevant techniques used in a wide range of CVEs within the network.
Ideally, it would help detect and block techniques that are used during or following the
exploitation of a CVE.

When we get deep into the ATT&CK, we can get a feeling that this mapping process is
kind of artificial or synthetic. The ATT&CK framework is a collection of the adversary’s
actions - or steps - during the attack flow. The exploitation of a CVE might be one of
these steps, but it’s only one part of a larger attack journey. Naturally, ATT&CK has
nothing to do with a specific CVE, which is simply a misconfiguration within a system.

For instance, buffer overflow or SQL injection are not techniques used for achieving
Execution or Privilege Escalation. These are weaknesses that are caused by a
misconfiguration in a vulnerable system, and exploiting these misconfigurations can be
leveraged for achieving the desired tactics.

We also need to remember that the mapping is an attempt to translate a CVE in action
into general coherent activities. There is no technique of injection to describe the

3

https://attack.mitre.org/matrices/enterprise/
https://attack.mitre.org/
https://vulcan.io/blog/integrating-mitre-attck-with-vulnerability-management-to-remediate/

injection of a malicious payload to a system, or file upload to describe how the attacker
can upload malicious executables to an application.

What we can do is try to perceive the high-level behavior of an adversary during the
exploitation of a CVE. Maybe we cannot find an injection or file upload technique, but
most of the time this activity can be referred to as Exploit Public-Facing Application
(T1190).

What has been done so far?
In the last few years, security and data researchers have tried to address the issue of
mapping ATT&CK techniques to CVEs, using many different approaches.

Academic researchers, as well as security professionals from the industry, attempted to
use NLP, machine learning, and deep learning methods to find a way to tackle the issue.
Huge datasets that include CVE descriptions, references, and other attributes were
used as a base for these methods.

Machine Learning approaches are interesting but can encounter problems. Sometimes,
CVE descriptions and references are poor and do not provide enough data about the
vulnerabilities, their root causes, and their consequences.

In October last year, MITRE released its methodology for mapping.

The project, which was published on GitHub last year, shows a way to describe the
exploitation process and the impacts of a vulnerability. The methodology defines a
logical process that each vulnerability can be passed through - mapping the exploit
technique of a vulnerability and the impacts (benefits) that can be gained after
successful exploitation.

The MITRE methodology includes three methods to map the techniques:
1.	 Mapping vulnerability types (SQLi, XSS, Deserialization, etc.).
2.	 Mapping vulnerability functionalities (reading files, reading from memory,

overwriting existing files, etc.).
3.	 Exploitation techniques (phishing, valid hardcoded credentials, etc.).

We truly believe this methodology has a lot of potential, and we also used this as a
basis for our own research at Vulcan Cyber. But the MITRE project is intended to be a
manual community project in which security professionals help with mapping CVEs and

contribute regularly to this knowledge base. At the time of writing, the mapping CSV file
had last been updated in February 2021.

4

https://github.com/center-for-threat-informed-defense/attack_to_cve
https://github.com/center-for-threat-informed-defense/attack_to_cve/blob/master/Att%26ckToCveMappings.csv

The Voyager18 approach
The Vulcan Cyber research team, also known as Voyager18, is a team of cyber experts
working to leverage machine-learning and cyber research.

During our research, we attempted to use the data related to a specific CVE and utilize
it for mapping relevant techniques to that CVE. This data includes CVE description,
CWE data, and CVSS vector information.

The CWE, which is the weakness, or the root cause behind a CVE, implies the technical
reason for a vulnerability’s existence.

The CVSS vector is a vector representation of some valuable characteristics of a CVE,
including the attack vector, the requirement for the victim interaction for successful
exploitation, the requirement for the attacker to gain some sort of privileges prior to the
exploitation, the CIA impact of a vulnerability, etc.

Taking this data - together with text analysis and machine learning processes that are
done on the CVE’s textual data (description and references) - we find patterns that give
us indications about relevant tactics and techniques for CVEs.

CWE
At its core, the Common Weakness Enumeration (CWE™) is a list of software and
hardware weaknesses types. Creating the list is a community initiative
aimed at creating specific and succinct definitions for each common weakness type.

The CWE tag for a CVE could provide us with the basic data regarding a CVE. It tells us

5

CVSS VECTOR
EXPLOITATION

FLOW

CWE’S
EXPLOITATION
TECHNIQUES

EXPLOITATION & IMPACT
BY TEXT ANALYSIS

CIA TO
IMPACT

ATT&CK techniques related to the vulnerable
component’s confidentiality, integrity and availability,
using the CIA impact metrics.

Core ATT&CK techniques mapped to
CVSS3 vector’s exploitation metrics.

CVE context - Using text analysis methods to add the
last layer of accuracy, with techniques that are related
to the CVE’s exploitation/impact.

ATT&CK techniques that are commonly used
along the exploitation phase of a specific CWE.

the actual weakness of the CVE - whether it’s the misconfiguration or the programmer’s
fault - that allows the adversary to abuse a system.

By looking at the CWE of a CVE, we can get the first understanding of the vulnerability
type - SQL injection, Cross-site scripting, memory vulnerability, improper permissions
management weakness, and even general insufficient input validation.

Some CWEs can immediately reveal ATT&CK techniques that are related to a CVE, with
high probability.

For instance, CWE-79 - Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting’), is very straightforward. Knowing that a CVE
describes a Cross-site scripting vulnerability, we can generally infer techniques that
are usually related to XSS attacks, such as web session stealing, disclosure of some
browser and operating-system information, defacement of the website, etc.

Mapping of CWEs like Cross-site scripting or XSS is very close in its idea to the
vulnerability type mapping that was done by MITRE.

There are multiple challenges with this approach. The most obvious one we
encountered so far is that not all CWEs are related to a specific known vulnerability
type. Put aside XSS, SQL, and their colleagues, CWEs such as Information Exposure,
Improper Authentication, or even Input Validation, probably won’t provide as much
data about general common techniques that could be mapped to all CVEs tagged with
these CVEs. The reason is that these CWEs are too “general” and gather CVEs that
sometimes do not share common characteristics for ATT&CK techniques mapping.

In cases like these, we hope that with more data, such as different CVSS vectors, and
textual analysis of the descriptions, we could still find patterns, or repeated behaviors,
among these CWEs.

CVSS3 vector
The Common Vulnerability Scoring System (CVSS) is an open framework for
communicating the characteristics and severity of software vulnerabilities.
The Base Score reflects the severity of a vulnerability according to its intrinsic
characteristics which are constant over time and assumes the reasonable worst-
case impact across different deployed environments.

We believe that the CVSS3 vector can play a major role in the mapping. The
characteristics provided by the vector bring a lot of insights when trying to understand
some basic information regarding a vulnerability’s exploitation phase.

6

https://cwe.mitre.org/data/definitions/79.html

7

Let’s begin with the basics. The following is a CVSS3 vector.

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

CVSS3 vector for CVE-2018-10759

We marked the relevant values for us now: Attack Vector (AV), Privileged Required (PR),
User Interaction (UI), and the CIA (Confidentiality, Integrity, and Availability).

User interaction is very simple. This metric “captures the requirement for a human user,
other than the attacker, to participate in the successful compromise of the vulnerable
component. Whether the vulnerability can be exploited solely at the will of the attacker,
or whether a separate user must participate in some manner.”

UI is tagged with ‘None’ (N) when the exploitation does not require interaction from any
user, or ‘Required’ (R), when “successful exploitation of this vulnerability requires a user
to take some action before the vulnerability can be exploited”. The required interaction
can be opening a malicious file that was downloaded by the victim, browsing a specific
malicious website, or even just performing a legitimate operation in the vulnerable
system that can trigger the exploitation.

Privileged required is also quite simple, and describes the level of privileges the
attacker has to gain prior to the exploitation. PR is tagged with ‘None’ (N) when an
authorized actor can successfully establish the attack, or ‘Low’ (L)/’High’ (H) when
privileges are required, basic or administrative correspondingly.

It becomes interesting with the Attack vector, because in CVSS3.1, FIRST tries to tackle
misunderstanding issues with the Attack Vector of CVSS3.0.

According to the specification, this metric “reflects the context by which vulnerability
exploitation is possible”.

There are four options for the attack vector value, which are Network (N), Adjacent (A),
Local (L), and Physical (P). In this discussion, we are focusing on Network and Local
vectors because their CVEs are the majority of the four.

Network vector takes place when “the vulnerable component is bound to the network
stack” so “such a vulnerability is often termed “remotely exploitable”. On first reading,
this description might mislead us to think that the Network vector is tagged only for
remotely exploitable services that are exposed to the network, but there’s more to it
than that, as we’ll soon see.

Local vector takes place when “The vulnerable component is not bound to the network
stack”. It happens when “the attacker exploits the vulnerability by accessing the target

system locally (e.g., keyboard, console), or remotely (e.g., SSH)” or when “the attacker
relies on User Interaction by another person to perform actions required to exploit
the vulnerability”. This one is straightforward - if an attacker already has access to
a system, via remote management protocol or local access, it means that the attack
vector is local because the vulnerable component could not be exploited directly via
the network stack. In addition, in cases when the attacker can exploit the vulnerability
without even accessing the system, for example by providing a malicious XLSX file to a
victim, it will be considered local as well.

Due to misinterpretation by people, in CVSS3.1, the guideline was clarified. And in the
user guide, the following section (3.3) was added:

“Guidance concerning Local attacks was improved in CVSS v3.0 by clarifying
the definitions of the Network and Adjacent values of the Attack Vector metric.
Specifically, analysts should only score for Network or Adjacent when a vulnerability
is bound to the network stack. Vulnerabilities which require user interaction to
download or receive malicious content (which could also be delivered locally, e.g.,
via USB drives) should be scored as Local.
For example, a document parsing vulnerability, which does not rely on the network
in order to be exploited, should typically be scored with the Local value, regardless
of the method used to distribute such a malicious document (e.g., it could be a link to
a web site, or via a USB flash drive).”

In section 3.10 more considerations regarding Attack Vector were added:

“Vulnerabilities where malicious data is received over a network by one component,
then passed to a separate component with a vulnerability should be scored with
an Attack Vector of local. An example is a web browser that downloads a malicious
office document, saves it to disk, and then starts a vulnerable office application
which reads the saved file.
In cases where the vulnerable functionality is part of the component that receives
the malicious data, Attack vector should be scored as Network. An example
is a web browser with a vulnerability in the browser itself, or a browser plugin or
extension, that triggers when the malicious data is received.”

So, when talking about local exploitation on a client workstation, the analyst should
distinguish between Network and Local by the way the malicious payload is delivered
or sent to the vulnerable component.

Another confusing issue was addressed in section 3.7, where FIRST tells us how to deal
with vulnerabilities in software libraries, where there are various ways the library could
be used by other programs that could affect the CVSS vector differently:

8

“When scoring the impact of a vulnerability in a library, independent of any adopting
program or implementation, the analyst will often be unable to take into account the
ways in which the library might be used. While specific products using the library
should generate CVSS scores specific to how they use the library, scoring the library
itself requires assumptions to be made. The analyst should score for the reasonable
worst-case implementation scenario. When possible, the CVSS information should
detail these assumptions.
For example, a library that performs image conversion would reasonably be used
by programs that accept images from untrusted sources over a network. In the
reasonable worst case, it would pass them to the library without checking the
validity of the images. As such, an analyst scoring a vulnerability in the library that
relates to the incoming data should assume an Attack Vector (AV) of Network (N),”

There is a reason that a “reasonable worst-case implementation scenario”
was marked in the quote. The spec instructs the analyst to score the CVSS for the
reasonable worst-case scenario. which makes it a little bit harder to create an aligned
standard of scoring and leaves room for the analyst’s discretion and imagination.

After reading and understanding the definitions and use-cases, we can try to find
combinations and patterns that might help us to better describe the exploitation flow of
a vulnerability.

As an example, with CVEs with a combination of AV:L, PR:L, and UI:N, we could clearly
identify a massive amount of local privilege escalation (LPE) vulnerabilities. It makes
sense - the attacker has low privileges on the system (PR:L), the vulnerability can be
exploited by local access to the system (AV:L), and there is no need for any interaction
by another user for successful exploitation. This pattern can assist us in mapping
Command and Scripting Interpreter (T1059), which is the initial position of the
attacker (e.g. Windows CMD/Powershell or Unix shell), and Exploitation for Privilege
Escalation (T1068).

It is not 100% accurate, and during the research, we encountered different cases that
put our assumptions in doubt, but we hope these obstacles can be beaten with more
work and analysis.

Confidentiality, integrity,
and availability?
In the section above, we explored the exploitability metrics. Aside from these, the
impact metrics can also provide valuable data that should be taken into consideration.

9

Let’s sum up the three metrics with the definitions from the specification:

	v Confidentiality - This metric measures the impact on the confidentiality of the

information resources managed by a software component due to a successfully

exploited vulnerability.

	v Integrity - This metric measures the impact on the integrity of a successfully exploited

vulnerability. Integrity refers to the trustworthiness and veracity of information.

	v Availability - This metric measures the impact on the availability of the impacted
component resulting from a successfully exploited vulnerability. While the
Confidentiality and Integrity impact metrics apply to the loss of confidentiality or
integrity of data (e.g., information, files) used by the impacted component, this
metric refers to the loss of availability of the impacted component itself.

The possible values are ‘HIGH’ (H) to reflect the result of a total loss of the metric, ‘Low’
(L) to show that there is partial or limited loss of the metric, and ‘None’ (N) when a metric
is not affected by exploitation.

As with the exploitability metrics, the team tried to find interesting patterns when
investigating CIA values of vulnerabilities and to map ATT&CK techniques to the impact
described in the CVE description.

An obvious example is the CIA vector of ‘C:N/I:N/A:H’. This vector states that there is no
loss of confidentiality or integrity after exploitation of a CVE, but only for the availability.
It turns out that most of the vulnerabilities’, tagged with this CIA vector, reviewed during
the research, showed that there is no need to textually analyze the data and look for
possible impacts - the only one is Endpoint Denial of Service: Application or System
Exploitation (T1499.004).

We also examined the ability to infer impact techniques for CIA vectors per CWEs.
Taking CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer, which is a parent CWE for many memory type weaknesses (Out-of-bound read,
Out-of-bound write, User after free, Heap or stack buffer overflow, etc.). While exploring
CVEs tagged with CWE-119, we could notice a massive amount of privilege escalation
and code execution vulnerabilities when filtering CVEs with the CIA vector of
‘C:H/I:H/A:H’.
The CWE-119 definition page strengthens this claim, and under the ‘Common
Consequences’ paragraph they mention the technical impact or consequences of
“Execute Unauthorized Code or Commands..”.

For CWE-22 Improper Limitation of a Pathname to a Restricted Directory (‘Path
Traversal’) with CIA vector of ‘C:H/I:N/A:N’, a trend of unauthorized read access to
filesystem impact (Data from Local System - T1005) can definitely be seen.

10

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/22.html

Text analysis
At first, we wanted to avoid going in this direction. We worked hard to find ways of
mapping ATT&CK techniques to CVEs solely using patterns of CWEs and CVSS3 vectors
- without leveraging any textual analysis method on the CVE description.

But we found this difficult to accomplish. Our approach is based on finding patterns, and
these patterns are not absolute, for a number of reasons.

The main reason is that there are distinctions between CVE characteristics that cannot
be differentiated and divided based on the CWE and CVSS3 vector parameters.

Let’s look at CVE-2017-9964:

“A Path Traversal issue was discovered in Schneider Electric Pelco VideoXpert
Enterprise all versions prior to 2.1. By sniffing communications, an unauthorized
person can execute a directory traversal attack resulting in authentication bypass or
session hijack.”

This is a path traversal (CWE-22) vulnerability, with a CVSS3 vector of
‘AV:N/AC:H/PR:N/UI:R/S:C/C:L/I:H/A:N’. In order to exploit the vulnerability, the
attacker should sniff communication, which is naturally mapped to techniques Network
Sniffing (T1040) or Adversary-in-the-Middle (T1557). We could not figure out that the
exploitation phase of this CVE includes network sniffing without reading the description.

Another one is CVE-2021-42771:

“Babel.Locale in Babel before 2.9.1 allows attackers to load arbitrary locale .dat
files (containing serialized Python objects) via directory traversal, leading to code
execution.”

This instance is a path traversal vulnerability that leads to code execution, which is not a
common impact of path traversal attacks.

In order to overcome these difficulties, we added to the mapping process some text
analysis methods.
We started by extracting phrases from CVE descriptions using the RAKE (Rapid
Automatic Keyword Extraction) algorithm.
Then we manually selected meaningful phrases for each CWE and grouped them into
groups with similar or close semantic meanings that characterize the CWE.
These phrases could be references for more possible exploitation and impact techniques,
such as “via crafted GIF file”, “send a specially crafted packet”, “via a crafted
serialized Java object”, “read files from the local filesystem”, “leading to information
disclosure” and many more.

11

Putting it all together
In the first sections, we drilled down into each phase of the mapping.
In the following diagram, we will explore an example of the whole mapping process while
trying to identify possible patterns.

Exploitation metrics of AV:N, PR:N, and UI:R indicate vulnerability that can be exploited
remotely with the requirement for the victim interaction, without the need for valid
credentials or privileges prior to the exploitation.

The pattern of a memory buffer weakness with the exploitation described above, helps
us determine that this is a vulnerability in a client application.

As we already mentioned, section 3.10 in the CVSS3 user guide can support this
hypothesis:

“… In cases where the vulnerable functionality is part of the component that
receives the malicious data, Attack Vector should be scored as Network. An
example is a web browser with a vulnerability in the browser itself, or a browser
plugin or extension, that triggers when the malicious data is received.”

It brings us to map T1566 (Phishing) and T1203 (Exploitation for Client Execution).

12

CVSS VECTOR
EXPLOITATION

FLOW

CWE’S
EXPLOITATION
TECHNIQUES

EXPLOITATION & IMPACT
BY TEXT ANALYSIS

CIA TO
IMPACT

T1005 - Data from Local System
T1499.004 - Endpoint Denial of Service:
Application or System Exploitation.

T1566 - Phishing
T1203 - Exploitation for Client Execution

T1059 - Command and Scripting Interpreter.

T1189 - Drive-by-Compromise

CVE-2016-0062 - “Micrososft Internet Explorer 11 and Microsoft Edge allow remote attackers to execute arbitrary code or cause a denial of
service (memory corruption) via a crafted website, aka “Microsoft Browser Memory Corruption Vulnerability.”
CWE-119 - Improper Restriction of Operations within the Bounds of a memory Buffer.
CVSS3 vector - AV:N/AC:L/PR:N/UI:R/s:U/C:H/I:H/A:H

Using the vector and the CWE information, we can also map T1189 (Drive-by
Compromise) for web browser components.

The next step is to review the CIA metrics - C:H/I:H/A:H. This time, we can presume
that the adversary can either obtain local data from the system or cause a crash to the
system after successful exploitation. We can now map T1499.004 (Endpoint Denial of
Service: Application or System Exploitation) and T1005 (Data from Local System).

Lastly, we can sharpen it a bit more by analyzing the CVE description, and figuring out
that another possible impact of the vulnerability is executing malicious code on the
vulnerable system. It leads us to map T1059 (Command and Scripting Interpreter).

From the defender’s perspective, the final phase is taking the mapped techniques and
using them in order to place proper detection and mitigation mechanisms.

For example, if we look at T1203 (Exploitation for Client Execution), the mechanisms
are helpful in defeating the exploitation of the vulnerability. The defender can monitor
the Internet Explorer application logs to pinpoint crash events after browsing a particular
website (DS0015), and monitor the process by creating events to spot successful
exploitation attempts (DS0009). The defender can place some mitigation techniques
such as application sandboxing (M1048) or any exploit protection application (M1050)
such as WDEG or EMET, to hopefully prevent the exploitation.

Future research and challenges
We’re only at the beginning of our research and there are many directions and ideas left
to explore.

The first is to research the capability to distinguish between different types of CPEs
and to use this differentiation in order to better map ATT&CK techniques. Currently, we
categorize the vulnerable component into various different types - client applications,
public-facing services, shared libraries, operating systems, etc.

Another interesting research path is to check “inheritance” between CWEs, or the
relationships between parents of CWEs to their children. For instance, CWE-119:
Improper Restriction of Operations within the Bounds of a Memory Buffer is the
parent of CWE-125: Out-of-bounds Read. It is interesting to understand what this
parental relationship means in the context of inheriting ATT&CK techniques from parent
to child.
There are plenty more ideas and potential research directions. Besides these, there
are also challenges we need to tackle. The major one is dealing with CVEs with poor
description.

13

About Vulcan Cyber
Vulcan Cyber® breaks down organizational cyber risk into measurable,
manageable processes to help security teams go beyond their scan
data and actually reduce risk. With powerful prioritization, orchestration
and mitigation capabilities, the Vulcan Cyber risk management SaaS
platform provides clear solutions to help manage risk effectively. Vulcan
Cyber enhances teams’ existing cyber environments by connecting
with all the tools they already use, supporting every stage of the cyber
security lifecycle across cloud, IT and application attack surfaces.
The unique capability of the Vulcan Cyber platform has garnered
Vulcan recognition as a 2019 Gartner Cool Vendor and as a 2020 RSA
Conference Innovation Sandbox finalist.

START OWNING YOUR RISK

TRY VULCAN FREE

Poor descriptions, without much information regarding vulnerabilities’ exploitation and
impact, minimize the algorithm’s capability to map the right and exact techniques to
a CVE. As long as CWE and CVSS3 vector patterns are not 100% accurate, textual
processing and analysis will always be a part of the process. And for textual processing
to succeed, the description should be informative enough.

Regarding the textual analysis, in future work, we plan to extract keywords also from
ATT&CK techniques. We will tag them to the semantic groups we created with the CWE
keywords for matching CWEs and ATT&CK techniques.

Another direction we can research is to isolate phrases that are unique per CWE and
map them to ATT&CK techniques. Lastly, we will find overlapping phrases between
CWEs, in order to apply known mapped techniques of one CVE to another one.

14

https://vulcan.io/lp/vulcan-free/
https://vulcan.io/lp/vulcan-free/

15

About Voyager18
The Vulcan Cyber research team, also known as Voyager18, is a team of
cyber experts working to leverage machine-learning and cyber research
to ensure Vulcan Cyber remains a cyber security leader in the field. The
team’s main objective is to research the latest cyber risk trends, including
new attack types and remediations. The team is also responsible for
bringing innovation to the Vulcan Cyber platform so that our customers
get improved and customized cyber risk management capabilities. This
includes research of more specific and accurate risk calculations that can
truly help our customers own their risk.

SEE THE FULL RESEARCH

EXPLORE MORE

References
[1] MITRE ATT&CK Matrix - Enterprise

[2] CWE View: Research Concepts

[3] CVSS Version 3.1 - Specification Document

[4] CVSS Version 3.1 - User Guide

[5] Mapping MITRE ATT&CK to CVEs for Impact by CTID

[6] Linking CVE’s to MITRE ATT&CK Techniques by Aditya Kuppa, Lamine Aouad and Nhien-An Le-Khac

https://mitremapper.voyager18.io/
https://attack.mitre.org/matrices/enterprise/
https://cwe.mitre.org/data/definitions/1000.html
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/v3.1/user-guide
https://github.com/center-for-threat-informed-defense/attack_to_cve
https://dl.acm.org/doi/fullHtml/10.1145/3465481.3465758

